Exercise Sheet Solutions #1

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

P1. Show that $J^*(\mathbb{Q} \cap [0,1]) = J^*([0,1] \setminus \mathbb{Q}) = 1$, and $J_*(\mathbb{Q} \cap [0,1]) = J_*([0,1] \setminus \mathbb{Q}) = 0$.

Solution: We will prove for just $\mathbb{Q} \cap [0,1]$ given that the proofs for $[0,1] \setminus \mathbb{Q}$ are analogous. Let $S \subseteq \mathbb{Q} \cap [0,1]$ be a simple set (disjoint union of boxes). If $B = [b_1,b_2] \subseteq S$ is a box that participates in S, then $B \subseteq \mathbb{Q}$, but as \mathbb{Q} has no interior that implies that $b_1 = b_2$ and B is a point. In particular Vol(B) = 0. Thus Vol(S) = 0 and we conclude that $J_*(\mathbb{Q} \cap [0,1]) = 0$.

Secondly, take a simple set $S \supseteq \mathbb{Q} \cap [0,1]$. We will show that $S \supseteq [0,1]$. Let $r \in [0,1] \setminus \mathbb{Q}$. If $r \notin S$ then there is an open interval I containing R such that $I \cap S = \emptyset$ (given that S is closed and $r \in S^c$). On the other hand I clearly contains an element from $\mathbb{Q} \cap [0,1]$ which is a contradiction. Thus $S \supseteq [0,1]$ and therefore $J^*(\mathbb{Q} \cap [0,1]) \ge 1$ by definition of infimum. Nevertheless, this infimum is reached with S = [0,1], so we are done.

P2. Let $U \subseteq \mathbb{R}$ be an open set. Show that U can be written as a disjoint union of countably many open intervals.

Solution: Let $(u_n)_{n\in\mathbb{N}}$ be a countable dense set on U. We define I_1 as the largest open interval on U that contains u_1 . Assume that we have defined I_1, \ldots, I_m in this way. If I_1, \ldots, I_m covers $(u_n)_n$ then we are done. If not, there is $n_m \geq m$ such that u_{n_m} is the first element that is not covered by these intervals. We define I_{m+1} as the largest interval that covers u_{n_m} inside U. By definition, we have that $\bigcup_m I_m \subseteq U$. On the other hand, if $u \in U$, then there is an interval $I \subseteq U$ that contains u, which also contains an element of $(u_n)_{n \in \mathbb{N}}$, and thus there is n such that $I \subseteq I_n$. We conclude that

$$\bigcup_{m} I_{m} = U.$$

P3. Let $U = \{(x,y): x^2 + y^2 < 1\} \subseteq \mathbb{R}^2$ be the open unit disk. Show that U cannot be expressed as a disjoint union of countably many open boxes.

Solution: We present two solutions. First, if by contradiction we express U as a disjoint union of countably many open boxes $(B_i)_{i=1}^{\infty}$ then we have that

$$U = B_1 \cup \bigcup_{i=2}^{\infty} B_i, \tag{1}$$

which is union of two non-empty open sets, which contradicts the connectedness of U.

For the second solution, we take a box $B = (a, b) \times (c, d)$ inside U. We notice that any point in the boundary of B cannot be cover with a box without overlapping the box B, which makes impossible to have the desirable expression.

P4. Give an example to show that the statement

$$\lambda^*(E) = \sup_{U \subset E, U \text{ open }} \lambda^*(U)$$

is false.

Solution: Take $E = \mathbb{R} \setminus \mathbb{Q} \cap [0,1]$. Then, the right-hand side is going to be 0 (given that the only open set contained in E is the empty set). Meanwhile, the left-hand side $\lambda^*(E)$, is going to be 1 given that any open set that contains the irrational numbers must contain the whole interval [0,1].

P5. (Area interpretation of the Riemann integral). Let [a,b] be an interval, and let $f:[a,b] \to \mathbb{R}_+ := [0,\infty)$ be a bounded function. Show that f is Riemann integrable if and only if the set $E_+ := \{(x,t) : x \in [a,b]; 0 \le t \le f(x)\}$ is Jordan measurable in \mathbb{R}^2 , in which case one has

$$\int_{a}^{b} f(x)dx = m^{2}(E_{+}).$$

where m^2 denotes two-dimensional Jordan measure.

Solution: We prove it first for piecewise constant functions. Let $f = \sum_{i=1}^{n} c_i I_n$, where $(I_i)_{i=1}^n$ is a partition of intervals of [a, b] and c_i are positive coefficients. This function is Riemann integrable with integral

$$\int_{a}^{b} f = \sum_{i=1}^{n} c_{i} m(I_{i}). \tag{2}$$

On the other hand, we have that

$$E = \{(x,t) : x \in [a,b], t \in [0,f(x)]\}$$

$$= \bigcup_{i=1}^{n} \{(x,t) : x_1 \in I_i, t \in [0,f(x)]\}$$

$$= \bigcup_{i=1}^{n} I_i \times [0,c_i],$$

which implies that E is simple.

By Theorem 1.6 from the lecture notes, we know that E_+ is Jordan measurable if and only if $J_*(E_+) = J^*(E_+)$, so for concluding, it is enough to show that

$$J_*(E_+) = \sup\{\int_a^b h : h \text{ is a piecewise constant function with } h \le f\},$$
 (3)

and

$$J^*(E_+) = \inf\{\int_a^b h : h \text{ is a piecewise constant function with } h \ge f\}.$$
 (4)

We will just prove the former one, given that the latter is analogous. By the previous calculation it follows that if $h \leq f$ is a piecewise function, then

$$\int_{a}^{b} h = \sum_{i=1}^{n} c_{i} m(I_{i}) = m^{2} (\bigcup_{i=1}^{n} I_{i} \times [0, c_{i}]) \le J_{*}(E_{+}).$$
 (5)

On the other hand, let $S = \bigcup_{i=1}^n I_i \times C_i$ be a simple set contained in E_+ . By refining and enlarging this boxes, we can assume that the sets $(I_i)_i$ are disjoint and that C_i is of the form $[0, c_i]$, where the quantity $\sum_{i=1}^n m(I_i)m(C_i)$ may only get bigger. Then, defining $h(x) = \sum_{i=1}^n c_i \mathbb{1}_{I_i}(x)$

we get
$$Vol(S) \leq \sum_{i=1}^{n} m(I_i) m(C_i) \leq \sum_{i=1}^{n} m(I_i) c_i = \int h \leq \sup \{ \int_a^b h : h \text{ is a piecewise constant function with } h \leq f \}.$$
As S was arbitrary, we conclude that
$$J_*(E_+) \leq \sup \{ \int_a^b h : h \text{ is a piecewise constant function with } h \leq f \}, \tag{7}$$
concluding.

$$J_*(E_+) \le \sup\{\int_a^b h : h \text{ is a piecewise constant function with } h \le f\},$$
 (7)

P6. (Homework) Let $U \subseteq \mathbb{R}^d$ be an open set. Show that U can be written as a disjoint union of countably many half-open boxes (i.e., sets of the form $B = \prod_{i=1}^{d} [a_i, b_i]$).